

Neutron and Proton Structure Functions and Duality

Simona Malace Duke University

HiX2010, Jefferson Lab, October 13-15 2010

Overview

Quark-hadron duality: non-trivial phenomenon (see Wally's talk)

- Manifestation: insight into the dynamic of strong interactions Standard tests of quark-hadron duality
- Application: could be used to access kinematic regions otherwise
 inaccessible

Use averaged resonance region data to constrain PDFs at large x?

- Experimental tests of quark-hadron duality in:
 - Proton F₂^p structure function
 - eutron F₂ⁿ structure function
 - \rightarrow New method: extract F_2^n from nuclear F_2
 - Application of method to smooth curves

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

- Application of method to data + Quark-Hadron Duality in F_2^n

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104 102001 (2010)

- Application of method to data: (a lot of) technical details

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Plans for future

Quark-Hadron Duality

Y. Liang et al., nucl-ex/0410027 (2004)

On average, the resonance region data <u>mimic</u> the twist-2 pQCD calculation (pQCD + Target Mass corrections)

→This happens at a surprisingly low Q²

"The successful application of duality to extract known quantities suggests that it should also be possible to use it to extract quantities that are otherwise kinematically inaccessible." (CERN Courier, 2004)

Quark-Hadron Duality: needs to be verified and quantified

Standard Tests of Quark-Hadron Duality

Basic test of Duality: the Q² behavior of averaged resonance region data when compared to QCD calculations

→2004: agreement better than 5% at Q² = 0.5 GeV² but ~ 18% at Q² = 3.5 GeV² →2009: deviation of data from MRST+TM increases with Q² up to Q² ~ 4.5 GeV² then saturates

*Kinematics: with increasing Q² resonances slide in regions of larger and larger x

of large-x strength in the pQCD parametrization

What should we use for quantitative tests of Duality at large x?

Leading Twist (LT) calculations ⇔ PDFs constrained up to
★ ~ 0.65-0.7: CTEQ, MRST (MSTW)...

Calculations beyond LT constrained up to x ~ 0.8-0.9 Alekhin et al.

S. Alekhin, Phys. Rev. D 63, 094022 (2001) ... S. Alekhin, J. Blumlein, S. Klein, S. Moch,

Phys. Rev. D 81, 014032 (2010)

CTEQ6X

Accardi, Christy, Keppel, Melnitchouk, Monaghan, Morfín, Owens, Phys. Rev. D 81, 034016 (2010)

Accardi et al., in preparation

Resonance region data average to the QCD (beyond LT) calculation S. Alekhin, J. Blumlein, S. Klein, S. Moch, Phys. Rev. D 81, 014032 (2010)

Quantitative Tests of Local Duality

1) Delimit W regions for duality tests

Quark-Hadron Duality in Proton F2^P

$$\int_{x_{m}}^{x_{M}} F_{2}^{p,data}(x,Q^{2}) dx / \int_{x_{m}}^{x_{M}} F_{2}^{p,param}(x,Q^{2}) dx$$

QCD calculation of <u>Alekhin</u>

S. I. Alekhin, JETP Lett. 82, 628 (2005).S. I. Alekhin, Phys. Rev. D 63, 094022 (2001)

- Within 10% : globally, 4th, 3rd, 2nd
- 1st : special case
 - some models predict stronger
 violations of duality
 - calculation based on handbag diagram may break at such low W
 - sits at the largest x (QCD fits poorly constrained) => difficult to test duality

S.P. Malace et al., Phys. Rev. C 80 035207 (2009)

Quark-Hadron Duality in Neutron Fⁿ₂

Verify quark-hadron duality in F₂ⁿ

Need F_2^n in the resonance region...

Could use proton F_2^p and deuteron F_2^d and

New method to extract F_2^n from F_2^p and F_2^d : iterative procedure of solving integral convolution equations

Impulse Approximation:

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Smearing Function for F₂^d

Smearing function evaluated in the weak binding approximation, including finite-Q² corrections

S.A. Kulagin and R. Petti, Nucl. Phys. A 765, 126 (2006)

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Extraction Method

We need F_2^n from:

$$\begin{split} \widetilde{F}_{2}^{n} &= F_{2}^{d} - F_{2}^{d(QE)} - \delta^{(off)} F_{2}^{d} - \widetilde{F}_{2}^{p} \\ \widetilde{F}_{2}^{n,p} &= \int_{x}^{M_{d}/M} dy f(y,\gamma) F_{2}^{n,p}(\frac{x}{y}) \end{split}$$

Additive extraction method: solve equation iteratively

$$f(y,\gamma) = \underbrace{N}_{i} \delta(y-1) + \underbrace{\delta f(y,\gamma)}_{i} \quad \text{finite width of smearing function}_{i}$$

normalization of smearing function

$$\widetilde{F}_{2}^{n}(x) = \mathrm{N}F_{2}^{n}(x) + \left[\int_{x}^{M_{d}/M} dy \,\delta f(y,\gamma) F_{2}^{n}(\frac{x}{y})\right] \longrightarrow \mathrm{perturbation}$$

$$F_{2}^{n(1)}(x) = \left[F_{2}^{n(0)}(x) + \frac{1}{\mathrm{N}}\left[\widetilde{F}_{2}^{n}(x) - \int_{x}^{M_{d}/M} dy \,f(y,\gamma) F_{2}^{n(0)}(\frac{x}{y})\right]$$
initial guess

Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Application of Method to Smooth Curves

- Monotonic curves: F₂^p and F₂ⁿ input from MRST; F₂^d is simulated using the finite-Q² smearing function
 - Additive method applied with initial guess $F_2^{n(0)} = 0$

*Fast convergence: extracted $F_2^{n(1)}$ almost indistinguishable from F_2^n input after only 1 iteration (smearing function sharply peaked around y = 1)

Application of Method to Smooth Curves

Curves with resonant structures: F₂ⁿ input from MAID

• Additive method applied with initial guess $F_2^{n(0)} = 0$

After 1 or 2 iterations: resonant peaks clearly visible; after 5 iterations extracted result very close to "true" result

Application of Method to Smooth Curves

Essential to take into account Q² effects in the smearing function
Additive method ($F_2^{n(0)} = 0$): Q²-dependent smearing function and Q²-independent smearing function

After 10 iterations: extraction with Q²-dependent smearing function converges to the input; extraction with Q²-independent smearing function does not

Application of Method to Data

Use proton and deuteron data at fixed Q² (matched kinematics)

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

• F_2^d reconstructed from F_2^p (data) and F_2^n (extraction) ~ F_2^d (data) after 2 iterations S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

Application of Method to Data

Study dependence of result on number of iterations: compare extractions with 2 and 3 iterations

Application of Method to Data

*Study dependence of result on initial guess $F_2^{n(0)}$: compare F_2^n extracted with 2 different inputs for initial guess: $F_2^{n(0)} = F_2^p$ vs $F_2^{n(0)} = F_2^p / 2$

 \bullet After 2 iterations: only 6% of all data lay outside a 2σ range

 Exercise caution with number of iterations: irregularities in data result in increased scattered in F₂ⁿ with increasing number of iterations

S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Plots by Nathan Baillie

BoNuS: Fⁿ₂ data

Slava Tkachenko, Ph.D. thesis (2009) Nathan Baillie, Ph.D. thesis (2009)

MALACE: F_2^n extracted from F_2^p and F_2^d

S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

BOSTED

P.E. Bosted and M.E. Christy, Phys. Rev. C 77, 065206 (2008)

Thanks to Nate, Sebastian ③ and the BoNuS Collaboration

Quark-Hadron Duality in the Neutron F₂ⁿ

Comparison: data to ABKM

S. Alekhin, J. Blumlein, S. Klein, S. Moch. Phys. Rev. D 81, 014032 (2010)

- 2nd and 3rd RES regions: agreement within 15-20%, on average
- 1st RES region: agreement worsens at the highest Q² (corresponds to the largest x)

globally remarkable agreement: within 10%

S.P. Malace, Y. Kahn, W. Melnitchouk, Phys. Rev. Lett. 104, 102001 (2010)

Quark-Hadron Duality: Application

Confirmation of duality in both proton and neutron => phenomenon not accidental but a general property of nucleon structure functions

Use averaged resonance region data (W² > 1.9 GeV²) to extend PDFs extraction to the largest x use... use... use... use...

Quark-Hadron Duality: Application

Stage 1 (last few decades): LT calculations to x ~ 0.7 (CTEQ, MRST(MSTW), GRV, etc.)

Plans for Future: Quark-Hadron Duality

A. Accardi, S.P. Malace, in preparation

$$\int_{x_m}^{x_M} F_2^{p,data}(x,Q^2) dx / \int_{x_m}^{x_M} F_2^{p,param}(x,Q^2) dx$$

- Study sensitivity of quark-hadron duality ratios to various prescriptions for inclusion of:
 - Higher Twist: additive vs multiplicative; HT(proton) same or different than HT(neutron)
 - Target Mass Corrections:
 OPE, CF...

etc.

Plans for Future: Quark-Hadron Duality

A. Accardi, S.P. Malace, in preparation

Study applicability of QCD calculation at low values of W; criterion: separation between target jet and current jet

Duality @ 12 GeV: E12-10-002

Extend proton and deuteron F₂ structure function precision measurements to larger x and Q² in the resonance region and beyond up to W² ~ 9 GeV², Q² ~ 17 GeV² and x ~ 0.99

Extra Slides

