Neutron and Proton Structure Functions and Duality

Simona Malace
Duke University

Overview

* Quark-hadron duality: non-trivial phenomenon (see Wally's talk)
(C) Manifestation: insight into the dynamic of strong interactions

Standard tests of quark-hadron duality
(e) Application: could be used to access kinematic regions otherwise inaccessible

Use averaged resonance region data to constrain PDFs at large x ?

* Experimental tests of quark-hadron duality in:
(e) proton $\mathrm{F}_{2}{ }^{\mathrm{p}}$ structure function
(e) neutron $F_{2}{ }^{n}$ structure function
\longrightarrow New method: extract $F_{2}{ }^{n}$ from nuclear F_{2}
- Application of method to smooth curves
Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)
- Application of method to data + Quark-Hadron Duality in $\mathrm{F}_{2}{ }^{n}$
S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104102001 (2010)
- Application of method to data: (a lot of) technical details
S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

薷Plans for future

Quark-Hadron Duality

* On average, the resonance region data mimic the twist-2 pQCD calculation (pQCD + Target Mass corrections)
\longrightarrow This happens at a surprisingly low Q^{2}
"The successful application of duality to extract known quantities suggests that it should also be possible to use it to extract quantities that are otherwise kinematically inaccessible."
(CERN Courier, 2004)

$$
\sqrt{\square}
$$

* Quark-Hadron Duality: needs to be verified and quantified

Standard Tests of Quark-Hadron Duality

Basic test of Duality: the Q^{2} behavior of averaged resonance region data when compared to QCD calculations

(C) Example: integrals over RES Region (W < $4 \mathrm{GeV}^{2}$); comparison of data to MRST+TM

$$
\int_{x_{m}}^{x_{M}}{\underset{2}{\text { data }}}^{x_{2}}\left(x, \Omega^{2}\right) d x \int_{x_{m}}^{x_{M}} F_{2}^{\text {calc. }}\left(x, \Omega^{2}\right) d x
$$

\rightarrow 2004: agreement better than 5% at $Q^{2}=0.5 \mathrm{GeV}^{2}$ but $\sim 18 \%$ at $Q^{2}=3.5 \mathrm{GeV}^{2}$
\rightarrow 2009: deviation of data from MRST+TM increases with Q^{2} up to $Q^{2} \sim 4.5 \mathrm{GeV}^{2}$ then saturates

Tests of Quark-Hadron Duality at large x

 Kinematics: with increasing Q^{2} resonances slide in regions of larger and larger x

PDFs (CTEQ, MRST, MSTW) poorly constrained at large x

Tests of Quark-Hadron Duality at large x

It is not surprising then:
$\rightarrow-\rightarrow$ though RES data DO average to MSTW08+TM at $Q^{2}=0.9 \mathrm{GeV}^{2}, x \sim(0.25,0.7)$
$-->$ RES data DO NOT average to MSTW08+TM at $Q^{2}=6.4 \mathrm{GeV}^{2}, x \sim(0.7,0.95)$

Not a violation of duality but very likely due to an underestimation of large-x strength in the pQCD parametrization

Tests of Quark-Hadron Duality at large x

What should we use for quantitative tests of Duality at large x ?
数Leading Twist (LT) calculations \Leftrightarrow PDFs constrained up to ※ ~ 0.65-0.7: CTEQ, MRST (MSTW)...

Tests of Quark-Hadron Duality at large x

 * Resonance region data average to the QCD (beyond LT) calculation S. Alekhin, J. Blumlein, S. Klein, S. Moch, Phys. Rev. D 81, 014032 (2010)

Quantitative Tests of Local Duality

1) Delimit W regions for duality tests

$$
\begin{array}{c|cc}
\text { Region } & \mathbf{W}_{\text {min }}^{2} & \mathbf{W}_{\text {max }}^{2} \\
\hline 1^{\text {st }} & 1.3 & 1.9 \\
2^{\text {nd }} & 1.9 & 2.5 \\
3^{\text {rd }} & 2.5 & 3.1 \\
4^{\text {th }} & 3.1 & 3.9 \\
\sqrt{\square} \text { DIS } & 3.9 & 4.5 \\
x=Q^{2} /\left(W^{2}+Q^{2}-M^{2}\right)
\end{array}
$$

2) F_{2} from data and QCD calculation

3) Calculate:

Quark-Hadron Duality in Proton $F_{2}{ }^{p}$

$\int_{x_{m}}^{x_{n}} F_{2}^{p, \text { data }}\left(x, Q^{2}\right) d x \int_{x_{m}}^{x_{n}} \int_{2}^{p, \text { param }}(x$, QCD calculation of Alekhin

S. I. Alekhin, JETP Lett. 82, 628 (2005).
S. I. Alekhin, Phys. Rev. D 63, 094022 (2001)

Within 10% : globally, $4^{\text {th }}$, $3^{\text {rd }}, 2^{\text {nd }}$
黄 $1^{\text {st }}$: special case

- some models predict stronger violations of duality
- calculation based on handbag diagram may break at such low W
- sits at the largest \times (QCD fits poorly constrained) \Rightarrow difficult to test duality

S.P. Malace et al., Phys. Rev. C 80035207 (2009)

Quark-Hadron Duality in Neutron $\mathrm{F}_{2}{ }^{n}$

Werify quark-hadron duality in $\mathrm{F}_{2}{ }^{n}$
Need $F_{2}{ }^{n}$ in the resonance region...
Could use proton $F_{2}{ }^{p}$ and deuteron $F_{2}{ }^{d}$ and
New method to extract $F_{2}{ }^{n}$ from $F_{2}{ }^{p}$ and $F_{2}{ }^{d}$: iterative procedure of solving integral convolution equations
Impulse Approximation:

Smearing Function for $F_{2}{ }^{d}$

Smearing function evaluated in the weak binding approximation, including finite- Q^{2} corrections
S.A. Kulagin and R. Petti, Nucl. Phys. A 765, 126 (2006)
Y. Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

Extraction Method

We need $F_{2}{ }^{n}$ from:

$$
\begin{aligned}
\tilde{F}_{2}^{n}=F_{2}^{d}-F_{2}^{d(Q E)}-\delta^{(o f f)} F_{2}^{d} & -\widetilde{F}_{2}^{p} \\
\widetilde{F}_{2}^{n, p} & =\int_{x}^{M_{d} / M} d y f(y, \gamma) F_{2}^{n, p}\left(\frac{x}{y}\right)
\end{aligned}
$$

Additive extraction method: solve equation iteratively

$$
f(y, \gamma)=\mathrm{N} \delta(y-1)+\delta(y, \gamma), \text { finite width of smearing function }
$$

normalization of smearing function

$$
\tilde{F}_{2}^{n}(x)=\mathrm{N} F_{2}^{n}(x)+\int_{d}^{M_{d} / M} d y \delta f(y, \gamma) F_{2}^{n}\left(\frac{x}{y}\right) \quad \text { perturbation }
$$

$$
F_{2}^{n(1)}(x)=F_{2}^{n(0)}(x)+\frac{1}{\mathrm{~N}}\left[\tilde{F}_{2}^{n}(x)-\int^{M_{d} / M} d y f(y, \gamma) F_{2}^{n(0)}\left(\frac{x}{y}\right)\right]
$$

initial guess

Application of Method to Smooth Curves

畨 Monotonic curves: $F_{2}{ }^{p}$ and $F_{2}{ }^{n}$ input from MRST; $F_{2}{ }^{d}$ is simulated using the finite $-Q^{2}$ smearing function

- Additive method applied with initial guess $F_{2}{ }^{n(0)}=0$

淎Fast convergence: extracted $F_{2}{ }^{n(1)}$ almost indistinguishable from F_{2}^{n} input after only 1 iteration (smearing function sharply peaked around $y=1$)

Application of Method to Smooth Curves

Wurves with resonant structures: $F_{2}{ }^{n}$ input from MAID

- Additive method applied with initial guess $F_{2}{ }^{n(0)}=0$

* After 1 or 2 iterations: resonant peaks clearly visible; after 5 iterations extracted result very close to "true" result

Application of Method to Smooth Curves

* Essential to take into account Q^{2} effects in the smearing function - Additive method $\left(F_{2}{ }^{n(0)}=0\right): Q^{2}$-dependent smearing function and Q^{2}-independent smearing function

*After 10 iterations: extraction with Q^{2}-dependent smearing function converges to the input; extraction with Q^{2}-independent smearing function does not

Application of Method to Data

*Use proton and deuteron data at fixed Q^{2} (matched kinematics)

$$
\tilde{F}_{2}^{n}(x)=F_{2}^{d}(x)-F_{2}^{d(Q E)}-\delta_{0.6}^{(o f-\text { shell) }} F_{2}^{d}(x)-\tilde{F}_{2}^{p}(x)^{\text {data }}
$$

Data:

SLAC at $Q^{2}=0.6,0.9,1.7,2.4 \mathrm{GeV}^{2} 0.4$
JLab (Hall C E00-116) at $Q^{2}=4.5,5,5.5,6.2,6.4 \mathrm{GeV}^{2}$

- data at fixed Q^{2} => bin-centering at cross section level using 2 different models

Application of Method to Data

> QE: extracted from data using model (form factors + smearing function)
> Off-shell corrections:
> - upper limit from model ~1.5\%
> W. Melnitchouk et al., Phys. Lett. B, 11 (1994)
> - subtract $\frac{1}{2}$ of model prediction assign 100\% uncertainty to correction
> - contributes < 2\% to total uncertainty on $F_{2}{ }^{n}$

Application of Method to Data

粼 F^{n} extraction: initial guess $F_{2}{ }^{n(0)}=F_{2}{ }^{\text {p }}$; number of iterations $=2$

- $F_{2}{ }^{n}$ in resonance region: 3 resonant enhancements (fall with Q^{2} at ~ rate as for $F_{2}{ }^{p}$)
- $F_{2}{ }^{d}$ reconstructed from $F_{2}{ }^{p}$ (data) and $F_{2}{ }^{n}$ (extraction) $\sim F_{2}{ }^{d}$ (data)
after 2 iterations
S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

Application of Method to Data

*Study dependence of result on number of iterations: compare extractions with 2 and 3 iterations

- Small change in $F_{2}{ }^{n}$ between iteration 2 and 3
- Extracted $F_{2}{ }^{n}$ changes to bring $F_{2}{ }^{d}$ reconstructed closer to $F_{2}{ }^{d}$ data; small differences between iteration 2 and 3

Application of Method to Data

對Study dependence of result on initial guess $F_{2}{ }^{n(0)}$: compare $F_{2}{ }^{n}$ extracted with 2 different inputs for initial guess: $F_{2}{ }^{n(0)}=F_{2}{ }^{p}$ vs $F_{2}{ }^{n(0)}=F_{2}{ }^{p} / 2$

- After 2 iterations: only 6\% of all data lay outside a 2σ range

- Exercise caution with number of iterations: irregularities in data result in increased scattered in $\mathrm{F}_{2}{ }^{n}$ with increasing number of iterations
S.P. Malace, Y. Kahn, W. Melnitchouk, in preparation

Comparison to BoNuS Data

- Plots by Nathan Baillie

BoNuS: $F_{2}{ }^{n}$ data
Slava Tkachenko, Ph.D. thesis (2009)
Nathan Baillie, Ph.D. thesis (2009)
MALACE: $F_{2}{ }^{n}$ extracted from $F_{2}{ }^{p}$ and $F_{2}{ }^{\text {d }}$
S.P. Malace, Y. Kahn, W. Melnitchouk, C. Keppel, Phys. Rev. Lett. 104, 102001 (2010)

BOSTED

P.E. Bosted and M.E. Christy, Phys. Rev. C 77, 065206 (2008)

Thanks to Nate, Sebastian © and the BoNuS Collaboration

Quark-Hadron Duality in the Neutron $\mathrm{F}_{2}{ }^{n}$

* Comparison: data to ABKM
S. Alekhin, J. Blumlein, S. Klein, S. Moch, Phys. Rev. D 81, 014032 (2010)
- $2^{\text {nd }}$ and $3^{\text {rd }}$ RES regions: agreement within 15-20\%, on average
- $1^{\text {st }}$ RES region: agreement worsens at the highest Q^{2} (corresponds to the largest x)
- globally remarkable agreement: within 10\%
S.P. Malace, Y. Kahn, W. Melnitchouk, Phys. Rev. Lett. 104, 102001 (2010)

$$
\int_{x_{n}}^{x_{n}} F_{2}^{n, d a t a}\left(x, Q^{2}\right) d x / \int_{x_{m}}^{x_{n}} F_{2}^{n_{2}, \text { param }}\left(x, Q^{2}\right) d x
$$

Quark-Hadron Duality: Application

*Confirmation of duality in both proton and neutron => phenomenon not accidental but a general property of nucleon structure functions
$\int F_{2}($ data $) d x / \int F_{2}(Q C D=$ Alekhin $) d x$

*Use averaged resonance region data $\left(\mathrm{W}^{2}>1.9 \mathrm{GeV}^{2}\right)$ to extend PDFs extraction to the largest x use... use... use... use...

Quark-Hadron Duality: Application

> Stage 1 (last few decades): LT calculations \Leftrightarrow PDFs constrained up to $x \sim 0.7$ (CTEQ, MRST(MSTW), GRV, etc.)

Plans for Future: Quark-Hadron Duality

A. Accardi, S.P. Malace, in preparation
$\int_{x_{m}}^{x_{M}} F_{2}^{p, \text { data }}\left(x, Q^{2}\right) d x / \int_{x_{m}}^{x_{M}} F_{2}^{p, \text { param }}\left(x, Q^{2}\right) d x$
Study sensitivity of quark-hadron duality ratios to various prescriptions for inclusion of:

- Higher Twist: additive vs multiplicative; HT(proton) same or different than HT(neutron)
- Target Mass Corrections: OPE, CF...

 etc.

Plans for Future: Quark-Hadron Duality

A. Accardi, S.P. Malace, in preparation
*Study applicability of QCD calculation at low values of W; criterion: separation between target jet and current jet

Duality @ 12 GeV : E12-10-002

* Extend proton and deuteron F_{2} structure function precision measurements to larger x and Q^{2} in the resonance region and beyond up to $\mathrm{W}^{2} \sim 9 \mathrm{GeV}^{2}, \mathrm{Q}^{2} \sim 17 \mathrm{GeV}^{2}$ and $x \sim 0.99$

Extra Slides

